Reem
Reem
01-02-2015
Mathematics
contestada
Calculate the following limit:
Respuesta :
konrad509
konrad509
01-02-2015
[tex]\lim_{x\to\infty}\dfrac{\sqrt x}{\sqrt{x+\sqrt{x+\sqrt x}}}=\\ \lim_{x\to\infty}\dfrac{\dfrac{\sqrt x}{\sqrt x}}{\dfrac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt x}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x+\sqrt x}}{x}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{x}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{\sqrt{x^2}}}}=\\[/tex]
[tex]\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{x+\sqrt x}{x^2}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{\sqrt x}{\sqrt{x^4}}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{x}{x^4}}}}}=\\ \lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{1}{x^3}}}}}=\\ =\dfrac{1}{\sqrt{1+\sqrt{0+\sqrt{0}}}}=\\[/tex]
[tex]=\dfrac{1}{\sqrt{1+0}}=\\ =\dfrac{1}{\sqrt{1}}=\\ =\dfrac{1}{1}=\\ 1 [/tex]
Answer Link
VER TODAS LAS RESPUESTAS ( 53+ )
Otras preguntas
This semicircle has a diameter of 5 meters. What is the area of this figure? Use 3.14 to for pi. Enter your answer as a decimal in the box. Round your answer to
Which is a way to revise your story to create a captivating hook?
why were the men fighting over the land in the story the interlopes?
Quadrilateral ABCD is inscribed in this circle. What is the measure of angle C? Enter your answer in the box.
What are the parts of speech
What is the Roman Empire’s cultural legacy
17) Compare the three scenarios below. Which scenario would natural selection most likely work? A) An island with lizards that all look alike and are all eating
reflect point A(5, 7, 2) across the xz-plane. where will the new point be located? (-5, -7, 2) (-5, -7, -2) (-5, 7, -2) (5, -7, 2)
subject drawn in the style of analytic cubism were often interpreted as flat figures with?
what is the answer to this question?